Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation

Academíc Program Specífícatíon Form For The Academíc

University: Anbar College: <u>Education for Pure Science</u> Department: <u>Physics</u> Date Of Form Completion: 10/6/2023

Prof. Dr. Abdul Rahman Salman. Juma	Assist. Prof. Dr. Harith Kamil Buniya	Dr. Mahir Noori Thameel
Dean's Name	Dean's Assistant ForScientífic Affairs	Head of Department
Date: / /	Date: / /	Date: / /
Sígnature	Sígnature	Sígnature

Assist. Prof. Dr. Feras Shaker Mahmood

Quality Assurance And University Performance Manager

Date: / / Sígnature

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Programme Specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the programmer.

1. Teaching Institution	University of Anbar
2. University Department	College of education for pure science- Physics
3. Programmer Title	Education Physics Sciences
4. Title of Final Award	Master and Ph. D. of Physics
5. Modes of Attendance offered	Quarterly
6. Accreditation	Nothing
7. Other external influences	University application - practical graduation research projects
8. Date of production	1/9/2023

9. Aims of the Programmer

1. Achieving the specified standards for the quality of material, human, technical and financial resources.

2. Providing an efficient administrative staff that knows its duties and powers according to the work structures and regulations, in which the requirements of the job description

are fulfilled.

3. Providing a specialized teaching staff who is fluent in using modern techniques and methods in education with good job satisfaction.

4. Preparing academic programs in accordance with international academic standards and providing their knowledge, training and technical requirements.

5. Preparing students with scientific, practical and educational knowledge that meets the needs of the labor market.

6. Paying attention to scientific research in terms of laboratory, research and researcher in order to achieve a distinguished research reputation locally and globally.

7. Research and professional openness to community institutions to meet their needs and aspirations.

8. Evaluate all individuals and processes to ensure quality performance and continuous improvement.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A1. Knowledge and Understanding

A1. Enable the graduate student to acquire theoretical knowledge of Physics.

A2. Empowering the graduate student how to teach and ways of communicating scientific information to grudaute students.

A3. The student's knowledge of the methods of measurement and evaluation and methods of modern teaching methods in physics.

A4. The graduate student is acquainted with the educational material by providing it electronically in the virtual classroom. In addition to enabling the student to know the learning theories related to the ages of students for the secondary school stage.

B. Subject-specific skills

B1. Gaining knowledge and enriching the student with the methods of laboratory work.

B2. Orienting the student to the scientific method in solving all scientific problems.

- B3. Knowing the objectives and origins of the art of teaching physics.
- B4. Enabling students to acquire the skills of using virtual classrooms

Teaching and Learning Methods

1. The method of listening and thinking deeply in order to understand the problem to solve it.

2. The method of scientific discussion and meaningful dialogue.

3. Adopting the method of monthly and final exams and submitting weekly reports.

Assessment methods

1. The treatment method using final scores.

- 2. Random and surprise tests.
- 3. Teaching tasks in the virtual classroom.

C. Thinking Skills

C1. Adopting the method of dialogue between the student and the professor.

C2. Interest in research projects and preparing organized reports

C3. Adopt the method of discussion. (Performance tests and seminars).

C4. Adopting e-learning to provide an interesting and flexible learning environment.

Teaching and Learning Methods

- 1. Method of application in research laboratories
- 2. Adopting the method of constructive dialogue and discussion
- 3. Adopt the trial-and-error method.
- 4. The adoption of multimedia in the virtual classes (image, text, audio, video)

Assessment methods

1. Preparation of the seminar (graduation research)

2. Adoption of the grading method as a basis in the evaluation process.

3. Adoption of the test method.

4. Adopting the method of discussions and dialogues between the students and the professor.

5. Create a test task in the virtual classes.

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1- That the student benefit from his learning and embody this in his personal and professional development.

D2- That the student is able to employ the knowledge he receives during the study stage. D3- That the student benefit from theoretical knowledge in employing the teaching profession and mastering it in a concept-based manner.

Fundamentals of teaching chemistry.

D4 - Skills of modern technologies in communication, documentation and communication.

Teaching and Learning Methods

1. Field visits in laboratories.

2. Scientific application in laboratories.

3. Take advantage of graduation research.

4. Presentation and presentation of educational content in virtual classes using multimedia (video, recorded lecture).

Assessment Methods

- 1. Articles and periodical research
- 2. The interview
- 3. Final exams
- 4. Determining study tasks and duties periodically and regularly in the virtual classroom

11. Progra	11. Programmer Structure (Master)								
Course or Weekly hours									
Level/	Module Code	Course or ModuleTitle	Lec.	Lab.					

Year				
	PHE522	Advanced Solid State Physics	2	-
	PHE523	Advanced Quantum Mechanics	2	-
	PHE528	Advanced Mathematical Physics	2	-
	PHE526	Electromagnetic theory	2	-
Attending	PHE524	Advanced Nuclear Physics	2	-
(First +	PHE540	English	2	-
Second) Class	PHE532	Modern trends in teaching methods	2	-
	PHE525	Classical mechanics	2	-
	PHE529	Statistical Mechanics	2	-
	PHE521	Physics of materials	2	-
	PHE527	elective	2	-
	PHE530	Scientific Research Methodology and Statistics	2	-
	PHE531	Educational Technology	2	-
Research class		Thesis Project	4	-

11. Progra	mmer Structure (l	Ph.D.)					
T V	Course or		Weekly hours				
Level/ Year	Module Code	Course or ModuleTitle	Lec.	Lab.			
	PHE621	Optoelectronics	2	-			
	PHE623	Advanced Quantum Mechanics	2	-			
	PHE627	Advanced Electrodynamic	2	-			
	PHE628	Advanced Mathematical Physics	2	-			
Attending (First +	PHE629	Teaching and Learning System	2	-			
Second) Class	PHE630	Scientific Research Methodology and Statistics	2	-			
	PHE528	Quantum optics	2	-			
	PHE622	Advanced solid state physics	2	-			
	PHE631	High Energies	2	-			
	PHE632	Special topic 1	2	-			
	PHE633	Special topic 2	2	-			
	PHE640	English	2	-			

Research	Thesis Project	4	_
class	Thesis Troject		_

13. Personal Development Planning

1. Using modern scientific sources.

2. Using rapid communication networks to transfer information such as the Internet.

3. Visits and practical practices in service laboratories.

4. Acquisition of scientific and modern experiences and skills in the field of modern technical communication

14. Admission criteria

1. Admission according to the general and central average system.

2. Admission to departments is according to the student's desire and is modified.

3. It is a condition for a graduate of the preparatory school and the scientific stream exclusively.

4. The accepted graduate student's personal and mental integrity and freedom from physical impairments

15. Key sources of information about the programmer

1. Curriculum books approved by the Sectorial Committee of the Faculties of Education for Pure Sciences.

2. Helping books.

3. Books and archaeological resources / sources in the English language.

4. Additional sources from the Internet.

5. The training courses held by the university on e-learning platforms.

	Curriculum Skills Map (Master)																		
					Programmer Learning Outcomes														
Year / Course Level Code CourseTitle		CourseTitle	Core (C) or Option(O)		Knowledge and Subject-specific skills					Thinking Skills			cills	General and Transferable Skills (or) Other skills relevant to employability and personal development					
			1	A1	A2	A3	A4	B 1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
	PHE522	Advanced Solid State Physics	Core					\checkmark	\checkmark							\checkmark		\checkmark	\checkmark
	PHE523	Advanced Quantum Mechanics	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHE528	Advanced Mathematical Physics	Core			\checkmark		\checkmark	\checkmark							\checkmark			
	PHE526	Electromagnetic theory	Core	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark			
	PHE524	Advanced Nuclear Physics	Core					\checkmark	\checkmark							\checkmark			
Attending	PHE540	English	Core					\checkmark	\checkmark							\checkmark			
(First	PHE532	Modern trends in teaching methods	Core					\checkmark	\checkmark							\checkmark			
+Second)	PHE525	Classical mechanics	Core			\checkmark		\checkmark	\checkmark							\checkmark			
	PHE529	Statistical Mechanics	Core					\checkmark	\checkmark							\checkmark			
	PHE521	Physics of materials	Core	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark			
	PHE527	elective	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHE530	Scientific Research Methodology and Statistics	Core			\checkmark		\checkmark	\checkmark							\checkmark			
	PHE531	Educational Technology	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
Second Year	r		0	,					I			,							

Second Year MAT515 Thesis Project	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
---	------	--------------	--	--------------	--	--------------	--------------	--	--	--------------	--	--	--	--------------	--	--	--

	Curriculum Skills Map (Ph.D.)																		
				Programmer Learning Outcomes															
Year/ Level	G 1 (Ourse life		Core (C) or Option(O)		Knowledge and understanding			Subject-specific skills			Thinking Skills			tills	General and Transferable Skills (or) Other skills relevant to employability and personal development				
			option(o)	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
	PHE621	Optoelectronics	Core	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark
	PHE623	Advanced Quantum Mechanics	Core	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark			
	PHE627	Advanced Electrodynamic	Core	\checkmark				\checkmark	\checkmark							\checkmark			
	PHE628	Advanced Mathematical Physics	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHE629	Teaching and Learning System	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
Attending (First	PHE630	Scientific Research Methodology and Statistics	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
+Second)	PHE528	Quantum optics	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHE622	Advanced solid state physics	Core	\checkmark		\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHE631	High Energies	Core	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark			
	PHE632	Special topic 1	Core			\checkmark		\checkmark	\checkmark							\checkmark			
	PHE633	Special topic 2	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			
	PHE640	English	Core			\checkmark		\checkmark	\checkmark			\checkmark				\checkmark			

Ministry of Higher Education and Scientific Research Scientific supervision and evaluation device Department of Quality Assurance and Academic Accreditation International Accreditation Department

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

University of Anbar								
College of Education for Pure Sciences / Department of Physics								
Advanced mathematic physics								
PhD. Degree in physics								
Presence								
First semester 2023-2024								
2 hours								
1/6/2024								
rices and Cramer's method								
matrix inverse method								
The student learns how to find the eigen value and eigen vector for a number of applied problems in quantum mechanics								
-Learn about geometric functions and how to solve differential equations using the Frobenius method								
The student learns how to find the signal type in Fourier series electronic circuits								
The student learns how to solve equations using matrices and Cramer's method								
matrix inverse method								

10. Learning Outcomes, Teaching Learning and Assessment Methode

A- Knowledge and Understanding

A1- Graduate students understand how to solve many advanced physics problems using advanced mathematics.

A2. The student will understand how to solve equations using matrices and Cramer's method and finding the inverse of the matrix A3. - The student understands how to find the eigen value and the eigen vector

B. Subject-specific skills

B1. -- The skill of using advanced mathematics to solve some physics problems, including nuclear, electrodynamics, quantum mechanics, electromagnetism, and others.

Teaching and Learning Methods

-Lecture, discussion, and solving of problem.

Assessment methods

-Short question - Activity -Duties - Final exam.

C. Thinking Skills

C1. - Advanced mathematics develops the thinking and imagination skills of postgraduate students and develops their skills by solving mathematical problems related to other physical sciences.

Teaching and Learning Methods

-Lecture, discussion, and questioning.

Assessment methods

Percentage evaluation methods 1 monthly exam 20 2 Activity and duties 5 3 Oral exam 5 4 Final exam 70 Total 100%

D. General and Transferable Skills (other skills relevant to employability and

personal development) D1. Many problems in advanced physics, such as quantum mechanics, electrodynamics, and electromagnetism, require advanced mathematics, such as the Lagender function and bezel eu..

11. Cot	irse Struc	ture			
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	2	nd Vectors & Matrix:	and action and	Lecture with data show	Discussion, Short questions
2	2	Vector Space,		Lecture with data show	Discussion, Short questions
3	2	Range ,Rank, and Nullity		Lecture with data show	Discussion, Short questions
4	2	matrix method, Grammars'		Lecture with data show	Discussion, Short questions
5	2		Test 1		
6	2		CH-4: Engineering Analytic ,Frobenius series	Lecture with data show	Short questions
7	2	student learn Fourier series.	Laplace Transform, Fourier series	Lecture with data show	Discussion, Short questions
8	2	student learn Jacobi's Method		Lecture with data show	Short questions
9	2			Lecture with data show	Discussion, Short questions
10	2	student learn Gauss-seidel	C C	Lecture with data show	Discussion, Short questions
11	2		Test 2		
12	2	Bessel eq.	operator method, Bessel eq.	Lecture with data show	Discussion, Short questions
13	2	student learn Trapezoidal rule	CH-5:/Numerical integration methods1-Rectagular rule 2- Trapezoidal rule	show	Discussion, Short questions
14	2			Lecture with data show	Short questions
15	2	student learn Gaussain	Gaussain integration formula	Lecture	, Short

12. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	1-Aplied numerical methods for digital computation, M.J james, G.M th and J.C Watrol 2-Matrix and Tensors in physics by A W. Joshi
Special requirements (include for example workshops, periodicals, IT software, websites)	-Introduction to numerical methods by A .Star K1 -Mathmatical method in phys. ,vol.1 Byron2
Community-based facilities (include for example, guest Lectures , internship , field studies)	 Mathmatical methods in the physical Sciences 3rd Edition Mary L. Boas Depaul university Advanced engineering mathematics fifth edition, Wile
12 Admissions	

13. Admissions			
Pre-requisites	Master degree		
Minimum number of students	4		
Maximum number of students	15		

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

1. Teaching Institution	University of Anbar
2. University Department/Centre	College of Education for Pure Sciences / Department of Physics
3. Course title/code	Advanced mathematic physics
4. Programme(s) to which it contributes	M.Sc
5. Modes of Attendance offered	Presence
6. Semester/Year	First semester 2023-2024
7. Number of hours tuition (total)	2 hours
8. Date of production/revision of this specification	1/6/2024
9. Aims of the Course	
-The student should know the types of differential equation	ns and ways to solve each type
The student should know the special functions such as Lag equations.	gendre, Bezel, Hermitian, LAGURE, chephiff, and other
-The student should know the most important methods of i relationship between them, the error function, and others	integration, including the gamma and beta functions, the
-The student should know the methods of numerical integr	ation, including the simpson rule

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Knowledge and Understanding

A1. The student may understands to students in modern mathematics ,and some its applications.

B. Subject-specific skills

B1. Developing students' understanding of modern mathematics so that they can solve basic theories and hypotheses in advanced physic,

Teaching and Learning Methods

-Lecture ,discussion ,and solving of problem.

Assessment methods

-Short question - Activity -Duties – Final exam.

C. Thinking SkillsC1. Ask any questions and home work.

Teaching and Learning Methods

-Lecture ,discussion ,and questioning.

Assessment methods

Percentage evaluation methods 1 monthly exam 20 2 Activity and duties 5 3 Oral exam 5 4 Final exam 70 Total 100%

D. General and Transferable Skills (other skills relevant to employability and

personal development) D1. Many problems in advanced physics, such as quantum mechanics, electrodynamics, and electromagnetism, require advanced mathematics, such as the Lagender function and bezel eu..

11. Cour	11. Course Structure						
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method		
1	2	Student learn O.D.E	Chapter one /Ordinary Differential Equations Simple substutingVariable separable - homgeous_	show	Short questions		
2	2	Student learn Exact D.E		Lecture with data show	Short questions		
3	2		<u>Bernoulli's Equation-</u> D.E. [,] S with constant coefficients	Lecture with data show	Short questions		
4	2	Student learn sequential method	method	Lecture with data show	Short questions		
5	2		Test 1				
6	2		Lagandra's D.E.	Lecture with data show	Short questions		
7	2	Student learn Bessel's D.E		Lecture with data show	Short questions		
8	2	Student learn		Lecture with data show	Short questions		
9	2	Student learn Laguerre D.		Lecture with data show	Short questions		
10	2	Student learn Chebyshev polynomials	,	Lecture with data show	Short questions		
11	2		Test 2				
12	2	Asymptotic Series	Error Functions, Asymptotic Series Sterling's formulas "Elliptic Integrals and functions- Factorial Function	show	Short questions		
13	2	BETA FUN.		Lecture with data show	Short questions		
14	2	Elliptic fun.	AND FUNCTIONS	Lecture with data show	Short questions		
15	2		Cimerana mala	Lecture with data show	Short questions		

12. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	1- calculus and Analytic Geomery 6 th Edition) Thomas . finney (1984) Addison Wesley cha.
Special requirements (include for example workshops, periodicals, IT software, websites)	 1- Mathematical methods in the physical sciences boas, mary (1966) john wiley 2 sons. 2- Introduction to Mathematical physics Charlie Harper (1976) prentice Hall
Community-based facilities (include for example, guest Lectures , internship , field studies)	 Methods of Mathematical physics Jeffeys . Jeffreys (1972) combridge university press. Watch videos posted on the university website

13. Admissions				
Pre-requisites	Bachelor's degree			
Minimum number of students	4			
Maximum number of students	15			

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

1. Teaching Institution	University of Anbar
2. University Department/Centre	Education for pure sciences
3. Course title/code	PHD Degree
4. Programme(s) to which it contributes	PHD Degree in physics
5. Modes of Attendance offered	
6. Semester/Year	Second / 2023-2024
7. Number of hours tuition (total)	3
8. Date of production/revision of this Specification	4-6-2024
9. Aims of the Course	
The student will know the working principle of adva	nced solid state physics
The student will delve into solid state physics in its s	tructural nature from its practical and theoretical aspects
Study the models of density functional theory and the	e concepts of working through it

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A. Knowledge and Understanding

A1- The student understands the nanostructure

A2- The student understands the Schrödinger equation for solid particles

A3- The student learns the concept of density functional theory

A4- The student understands the latest research results in this field

B. Subject-specific skills

B.1 The student concludes that nanostructure in terms of size is of great importance in industry and technology

B.2 The student distinguishes between the different effects of the density functional theory, Hartree and Hartree-Fock

B.3 The student learns the benefits that are obtained by solving the expressions of the equation

Teaching and Learning Methods

The theoretical lectures include theoretical explanation in addition to solutions to mathematical problems and conclusions using the board and display screens.. The latest industries and technologies that these technologies have worked on are also reviewed.

Assessment methods

Through daily and monthly exams, as well as the student's classroom activity and interaction with the lesson material

C. Thinking Skills

C.1 The student learns how to visualize and describe properties by solving these hypotheses.

 $\vec{C.2}$ Use this science in technological development and industry

Teaching and Learning Methods

The theoretical lectures include theoretical explanation in addition to solutions to mathematical problems and conclusions using the board and display screens.. The latest industries and technologies that these technologies have worked on are also reviewed.

Assessment methods

Through daily and monthly exams, as well as the student's classroom activity and interaction with the lesson material

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1. The student should know how to deal with solving equations by using hypotheses.

D2. This science should be used in technological development and industry. D3. The physical properties that make the solid materials used in the highest specifications in their physical and engineering forms should be known.

11. Course Structure

11. Cour							
Week	Hours	ILOs	Unit/Module orTopic Title	Teaching Method	Assessment Method		
1	3	Schrödinger Equation	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
2	3	Born– Oppenheimer Approximations	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
3	3	Hartree Approximations	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
4	3	Hartree–Fock Approximations	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
5	3	Restricted Hartree–Fock (RHF) Method	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
6	3	Unrestricted Hartree-Fock (UHF) Method	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
7	3		First month exam				
8	3		Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
9	3	Rothaan–Hall Equations	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
10	3	Slater-type Orbitals	Schrödinger formula, its solution and approximations	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams		
11	3	Gaussian-type Orbitals	Schrödinger formula, its solution and	A theoretical explanation on the board with	Daily exam, discussion, assignments, and monthly exams		

			approximations	examples	
12	3	Ab-initio Method	nanofibers	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
13		Density Functional Theory		A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
14	3	U	And dealing with nanofibers	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
15	3		Second month exam		

12. Infrastructure					
Required reading: · CORE TEXTS	1- Solid State Physics / Dr. Moaeed Gabriel. 2- Electrical and magnetic properties / Dr. Wakaa Al-Jubouri and Dr. Fahd Ghalib.				
COURSE MATERIALSOTHER	3. Solid state physics / Dr. Yahya Nouri Al- Jamal/University of Mosul				
Special requirements (include for example workshops, periodicals, IT software, websites)	Introduction to Solid State Physics : Charles Kittel-8th				
Community-based facilities	International Journal of Nanoscience				
(include for example, guest Lectures, internship, field studies)	International journal of Optics				
13. Admissions					
Dra raquisitas					

13. Admissions	
Pre-requisites	
Minimum number of students	3
Maximum number of students	6

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

1. Teaching Institution	Uiversity of Anbar
2. University Department/Centre	Education for pure sciences
3. Course title/code	Ph.D. Degree
4. Programme(s) to which it contributes	PhD. Degree in physics
5. Modes of Attendance offered	
6. Semester/Year	Second / 2023-2024
7. Number of hours tuition (total)	
8. Date of production/revision of this specification	4-6-2024
9. Aims of the Course	
Course objectives: The student knows the importance	of using high energy
The student will delve deeply into the study of element	ntary particles
Study of models related to the origin of the universe	

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Knowledge and Understanding

A1. The student understands elementary particles

A2 The student understands the interaction of particles with each other

A3. The student learns the methods of radioactivity

A4. For the student to understand the latest research results in this field

B. Subject-specific skills

B. 1 The student concludes that conservation laws are important in physics

B. 2 The student distinguishes between the different effects between matter and radiation

B. 3 The student learns all the laws of memorization

Teaching and Learning Methods

Theoretical lectures include theoretical explanation as well as solutions to mathematical problems and derivations using the blackboard

Assessment methods

Through daily and monthly exams, as well as the student's classroom activity and interaction with the lesson material

C. thinking skills

C. 1 The student knows how to imagine and describe the nucleus and develop a new model

C. 2 To use this science in technological development and industry

Teaching and Learning Methods

Theoretical lectures include theoretical explanation as well as solutions to mathematical problems and derivations using the blackboard

Assessment methods

Through daily and monthly exams, as well as the student's classroom activity and interaction with the lesson material

D. General and Transferable Skills (other skills relevant to employability and personal development) D1. The student knows how to measure nuclear energy and analyze its results D2. This science should be used in technological development and industry

11. Course Structure						
Week	Hours	ILOs	Unit/Modul e orTopic Title	Teaching Method	Assessment Method	
1	2	Familiarizing the student with the basics of high energy	Basic concepts in nuclear physics	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
2	2	Introducing the student to the standard model of particle physics	The Standard Model of particle physics	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
3	2	Familiarizing the student with nuclear power and its interactions	The interactions	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
4	2	Knowledge of bodies and antibodies	POSITRONS AND OTHER ANTIPARTICL ES	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
5	2	See particle classification	CLASSIFICATI ON OF PARTICLES		Daily exam, discussion, assignments, and monthly exams	
6	2	Knowledge of conservation laws	CONSERVATI ON LAWS	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
7	2	First month exam	fiirst month exam	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
8	2	Study of quark interaction and color character	QUARKS AND COLOR	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
9	2	Interactions and domains	Interactions and fields	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
10	2	Calculating nuclear moments	Classical and quantum pictures of interactions	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
11	2	Phi chart of	Feynman diagrams	A theoretical explanation on the	Daily exam, discussion, assignments, and monthly	

				board with examples	exams
12	2	The student's knowledge of the cross section	The interaction cross-section	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
13	2	Familiarizing the student with fixed and variable basics	Invariance principles and conservation laws	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
14	2	Calculating orbital angular momentum	Parity of particles and antiparticles	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
15	2	Second month exam	Second month exam	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams

12. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 Introductory Nuclear Physics, Kenneth S. Krane Oregon State University, 1987. 2Fundamentals in Nuclear Physics, Jean-Louis Basdevant, Jame Rich and Michal Spiro, Springer, 2004.
Special requirements (include for example workshops, periodicals, IT software, websites)	Internet International journals
Community-based facilities (include for example, guest Lectures , internship , field studies)	
12 Admissions	
13. Admissions	
Pre-requisites	

Minimum number of students

Maximum number of students

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

1. Teaching Institution	Uiversity of Anbar
2. University Department/Centre	Education for pure sciences
3. Course title/code	Master Degree
4. Programme(s) to which it contributes	Master Degree in physics
5. Modes of Attendance offered	
6. Semester/Year	First / 2023-2024
7. Number of hours tuition (total)	
8. Date of production/revision of this specification	4-6-2024
9. Aims of the Course	
The student knows the nuclear structure	
The student will delve deeply into nuclear physics	
Study nuclear models in depth	

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Knowledge and Understanding

A1- The student understands nuclear structure

A2- The student understands nuclear models

A3- The student learns the methods of radioactivity

A4- That the student understands the latest research results in this field

B. Subject-specific skills

B. 1 The student concludes that the atom and atomic structure are of great importance in industry and technology

B. 2 The student distinguishes between the different effects between matter and radiation

B. 3 The student learns the dangers of atomic radiation and the dangers of the atom

Teaching and Learning Methods

Theoretical lectures include theoretical explanation as well as solutions to mathematical problems and derivations using the blackboard

Assessment methods

Through daily and monthly exams, as well as the student's classroom activity and interaction with the lesson material

C. thinking skills C. 1 The student knows how to imagine and describe the nucleus and develop a new model

C. 2 To use this science in technological development and industry

Teaching and Learning Methods

Theoretical lectures include theoretical explanation as well as solutions to mathematical problems and derivations using the blackboard

Assessment methods

Through daily and monthly exams, as well as the student's classroom activity and interaction with the lesson material

D. General and Transferable Skills (other skills relevant to employability and personal development) D1. The student knows how to measure nuclear energy and analyze its results D2. This science should be used in technological development and industry

11. Cour	11. Course Structure					
Week	Hours	ILOs	Unit/Modul e orTopic Title	Teaching Method	Assessment Method	
1	2	Familiarizing the student with the basics of nuclear physics	Basic concepts in nuclear physics	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
2	2	Introducing the student to the quantitative levels of the nucleus	Quantum states of nuclei	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
3	2	Familiarizing the student with nuclear power and its interactions	Nuclear forces and interactions	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
4	2	Knowledge of conservation laws	Conservation laws	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
5	2	View nuclear models	Nuclear models	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
6	2	Exposing the student to radioactivity	Radioactive Decay	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
7	2	First month exam	First month exam	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
8	2	Study of the interaction and force between the two nucleons	The Forces between Nucleons	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
9	2	Study of the simplest element, deuteron	The Deuteron	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams	
10	2	Calculating nuclear moments	Magnetic Dipole Moment	A theoretical	Daily exam, discussion, assignments, and monthly exams	
11	2	Study of scattering resulting from nucleons	Nucleon-nucleon Scattering	A theoretical explanation on the board with	Daily exam, discussion, assignments, and monthly exams	

				examples	
12	2	The student's knowledge of neutron sources	Neutron Sources		Daily exam, discussion, assignments, and monthly exams
13	2	Exposing the student to ways to calm down and absorb neutrons	Absorption and Moderation of Neutrons	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
14	2	Calculating orbital angular momentum	Neutron detectors	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams
15	2	Second month exam	Second month exam	A theoretical explanation on the board with examples	Daily exam, discussion, assignments, and monthly exams

12. Infrastructure	
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 Introductory Nuclear Physics, Kenneth S. Krane Oregon State University, 1987. 2Fundamentals in Nuclear Physics, Jean-Louis Basdevant, Jame Rich and Michal Spiro, Springer, 2004.
Special requirements (include for example workshops, periodicals, IT software, websites)	Internet International journals
Community-based facilities (include for example, guest Lectures , internship , field studies)	
13. Admissions	
Pre-requisites	
Minimum number of students	
Maximum number of students	

Course Description Form

Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

University Of Anbar	1. Educational institution
College of Education for Pure Sciences /	2. University Department / Center
Department of Physics	
Advanced quantum mechanics	3. Course Name/Code
M.Sc.	4. Programs in which it
	enters
Presence	5. Available Attendance
	Forms
First Semester / 2023-2024	6. Semester / Year
3 hours	7. Number of Credit Hours
	(Total)
1Sept. 2024	8. The history of preparation
	of this description
9 Course Objectives:	

9. Course Objectives:

The student knows quantum mechanics in electromagnetic fields , Lorentz transformations , Angular momentum in electromagnetic fields in viewing of Q.M. and relativistic quantum mechanics equations

10. Learning outcomes and methods of teaching, learning and evaluation

A. Knowledge and understanding

The student may understands the quantum mechanics in electromagnetic fields , Lorentz transformations , Angular momentum in electromagnetic fields in viewing of Q.M. and relativistic quantum mechanics equations

B. Subject-specific skills

Development of understand to students in modern mathematics, electromagnetics and quantum mechanics

• Teaching and learning methods

- Lecture, discussion, short reports, problem solving

• Evaluation methods

- Monthly test (essay and topical)
- -Activity
- -Short questions
- -Reports
- -Duties
- -Final Exam

C. Thinking skills

- Ask various questions and brainstorm

• Teaching and learning methods

Discussion, lecture, questioning

• Evaluation methods

- 1. Achievement Tests
- 2. Test methods (interview and observation)
- 3. Student feedback

D. General and transferable Skills (other skills related to employability and personal development).

Q.M. in EM fields needs to modern mathematical and understanding to all laws in EM an Electrodynamics also relativistic Q.M needs to know more on Relativity

11. Course Structure					
Evaluati on method	Method of educatio n	Name of the unit/course or topic	Required Learning Outcomes	Hours	The week
Short questions	Lecture	Relativistic Wave Equations and their Derivation Klein–Gordon Equation , Derivation by Means of the Correspondence Principle		3	1
Short questions	Lecture	The Continuity Equation , Free Solutions of the Klein–Gordon Equation ,Dirac Equation , Derivation of the Dirac Equation ,The Continuity Equation		3	2
Short questions	Lecture	Properties of the Dirac Matrices , The Dirac Equation in Covariant		3	3
Short questions	Lecture	Nonrelativistic Limit and Coupling to the Electromagnetic Field , Problems		3	4
Short questions	Lecture	Lorentz Transformations and Covariance of the Dirac Equation, Lorentz Transformations , Lorentz Covariance of the Dirac Equation		3	5
Short questions	Lecture	Lorentz Covariance and Transformation of Spinors , Determination of the Representation S(A) , Further Properties of			6

		S, Transformation of Bilinear Forms		
Short questions	Lecture	Properties of the γ Matrices , Solutions of the Dirac Equation for Free Particles	3	7
		Test 1	3	8
Short questions	Lecture	Spinors with Finite Momentum , Orthogonality Relations and Density , Operators , . Problems	3	9
Short questions	Lecture	Orbital Angular Momentum and Spin Passive and Active Transformations	3	10
Short questions	Lecture	Rotations and Angular Momentum , Problems	3	11
Short questions	Lecture	The Coulomb Potential Klein–Gordon Equation with Electromagnetic Field	3	12
Short questions	Lecture	Coupling to the Electromagnetic Field , Klein–Gordon Equation in a Coulomb Field	3	13
Short questions	Lecture	Dirac Equation for the Coulomb Potential Problems	3	14
		Tset 2	3	15

12. Infrastructure			
 1-Advanced Quantum Mechanics by Franz Schwabl 2- Quantum Mechanics by LEONARD I. SCHIFF 3-Introduction to Quantum mechanics by D.J. Griffiths 4-Quantum Mechanics by Eugen Merzbacher 	Required readings : 1. Course Books 2. Other		
 PowerPoint 	Special Requirements		
Attending scientific seminars	Social services (e.g. guest lectures, vocational training and field studies)		

13. Acceptance		
	Prerequisites	
10	Minimum number of students	
14	The largest number of students	

Course Description Form

Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

University Of Anbar	1. Educational institution
College of Education for Pure Sciences /	2. University Department /
Department of Physics	Center
Quantum Optics	3. Course Name/Code
Ph.D	4. Programs in which it enters
Presence	5. Available Attendance Forms
Second Semester / 2023-2024	6. Semester / Year
3 hours	7. Number of Credit Hours (Total)
1 feb 2024	8. The history of preparation of this description
9 Course Objectives:	

9. Course Objectives:

The student knows how in quantum mechanics can deal between rays and materials and how in quantum mechanics dealing with optics and with several electromagnetic fields equations

10. Learning outcomes and methods of teaching, learning and evaluation

A. Knowledge and understanding

To let students know ,how in quantum mechanics can deal between rays and materials and how in quantum mechanics dealing with optics and with several electromagnetic fields equations

B. Subject-specific skills

Development of understand to students in modern mathematics, electromagnetics and quantum mechanics also and optics

• Teaching and learning methods

- Lecture, discussion, short reports, problem solving

• Evaluation methods

- Monthly test (essay and topical)
- -Activity
- -Short questions
- -Reports
- -Duties
- -Final Exam

C. Thinking skills

- Ask various questions and brainstorm

• Teaching and learning methods

- Discussion, lecture, questioning

• Evaluation methods

- 1. Achievement Tests
- 2. Test methods (interview and observation)
- 3. Student feedback

D. General and transferable Skills (other skills related to employability and personal development).

Quantum optics needs to modern mathematical and understanding to all laws in EM an Electrodynamics also Q.M

11. Course Structure					
Evaluati on method	Method of educatio n	Name of the unit/course or topic	Required Learning Outcomes	Hours	The week
Short questions	Lecture	Quantization of the lectromagnetic Field , Classical Electromagnetic Field, Hamiltonian Structure of the Classical Electromagnetic Quantization Field, of a Single Field Mode		3	1
Short questions	Lecture	Quantization of Many Modes Transverse and Longitudinal Fields Field commutators		3	2
Short questions	Lecture	Hamiltonian Viewpoint of Electromagnetic Gauge Freedom 1-10 Quantization with Dielectric Media Processes		3	3
Short questions	Lecture	Atomic Interaction with the Quantized Field Lorentz Force Lagrangian , Hamiltonian		3	4
Short questions	Lecture	Quantization and Minimal Coupling Dipole Interaction Why the Vector Potential Multipole Interactions Center-of-Mass Röntgen		3	5
					6

Short questions	Lecture	QED with Dielectric Media Classical electrodynamics in Dielectric Media Linear, Dispersive Media, Frequency Domain, Time Domain Classical Green Tensor, Example	3	7
Short questions	Lecture	Green Tensor in Free Space: Alternate Forms , Derivation of the Formula for the Dipole Radiation Field , Permittivity Properties, Energy Loss and Poynting's Theorem Kramers–Kronig Relations , Imaginary Frequencies	3	8
Short questions	Lecture	Generalized Susceptibility and Linear- Response Theory Proof, Atom and Field Susceptibilities 3-3 Atom–Surface Potentials Near Dielectric Media Kramers–Heisenberg Formula, Green Tensor, Mode Expansion of the Green Tensor Interaction Energy, Renormalization, Planar Interface,	3	9
Short questions	Lecture	The Dirac Equation Lorentz Invariance of the Dirac Equation Solutions of the Free Particle Dirac Near-Field Equation van der Waals– London Potential,	3	10

		Far-Field Potential , General Form for Scalar Polarizabilities , Temperature Dependence , Fluctuation– Dissipation Relation ,Fluctuation– Dissipation Example: Johnson Noise , Temperature- Dependent Shifts , Imaginary Time and the Low-Temperature Limit , High- Temperature Limit , Planar Boundaries at Nonzero Temperature		
Short questions	Lecture	Spinor Spinors Tensors	3	11
Short questions	Lecture	Excited-Level Shifts , Example: Spherically Symmetric Atom, Perfectly Conducting Plane , Lifetime Shifts , Decay Rate Near a Macroscopic Body , Free Space: Green- Tensor Example, Planar Reflector	3	12
Short questions	Lecture	امتحان شهر ثاني	3	13
Short questions	Lecture	Casimir Energy of Dispersive Dielectric Bodies , Induced Interaction Energies, Assembling a Dielectric Medium, Atom by Atom , Conversion to Permittivity , Introduction of the Dielectric Green Tensor , Explicit Permittivity Dependence	3	14
Short questions	Lecture	Free-Space Energy, Reduction to the Casimir– Polder Potential , Temperature Dependence, Counting Photons Beam Splitters	3	15

12. Infrastructure				
 1-Quantum and Atom Optics by Daniel Adam Steck, revision 24 September 2020 2-Introduction to Quantum Optics: an amateur's view Lecture notes, M.I. Petrov, D.F. Kornovan, I.V. Toftul, 2019 3-Lecture notes "Quantum optics" Friedrich- Schiller-Universit", Frank Setzpfandt, 2018 	Required readings : 1. Course Books 2. Other			
• PowerPoint	Special Requirements			
Attending scientific seminars	Social services (e.g. guest lectures, vocational training and field studies)			

13. Acceptance			
Prerequisites			
3	Minimum number of students		
5	The largest number of students		

Course Description Form

Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

University Of Anbar	1. Educational institution
College of Education for Pure Sciences /	2. University Department /
Department of Physics	Center
Classical Mechanics	3. Course Name/Code
M.Sc.	4. Programs in which it enters
Presence	5. Available Attendance Forms
First Semester / 2023-2024	6. Semester / Year
2 hours	7. Number of Credit Hours (Total)
1 feb. 2024	8. The history of preparation of this description
9. Course Objectives:	

The student knows motion of systems in general coordinates, conservations energy of systems, Lagrange equations, Hamilton equation, virial theorem, cyclic coordinates and Ruth, s procedure.

10. Learning outcomes and methods of teaching, learning and evaluation

A. Knowledge and understanding

The student may understands how describe motion of system and learn how drive Himaltion and Lagrange equations from each other . how to applied virial theorem on systems ,and when will use cyclic coordinates

B. Subject-specific skills

Development of understand to students in classical laws in physics which is based to modern physics .

• Teaching and learning methods

- Lecture, discussion, short reports, problem solving

• Evaluation methods

- Monthly test (essay and topical)
- -Activity
- -Short questions
- -Reports
- -Duties
- -Final Exam

C. Thinking skills

- Ask various questions and brainstorm

• Teaching and learning methods

Discussion, lecture, questioning

• Evaluation methods

- 1. Achievement Tests
- 2. Test methods (interview and observation)
- 3. Student feedback

D. General and transferable Skills (other skills related to employability and personal development).

Classical mechanic needs to know all classical laws of motion and theorems that applied in this field

	11. Course Structure					
Evaluati on method	Method of educatio n	Name of the unit/course or topic	Required Learning Outcomes	Hours	The week	
Short questions	Lecture	Mechanics of particle, Constraints , De Alembert's principle		2	1	
Short questions	Lecture	Lagrange equations , examples		2	2	
Short questions	Lecture	Hamilton's Principle, Derivation of Lagrange equations from Hamilton's .principle		2	3	
Short questions	Lecture	Conservation of theorems and .symmetry properties		2	4	
Short questions	Lecture	The two body central force problem, The equation of motion and first integral		2	5	
Short questions	Lecture	The Virial theorem		2	6	
		Test 1		2	7	
Short questions	Lecture	Legender transformation and the Hamiltonian equations of motion		2	8	
Short questions	Lecture	Cyclic coordinates and Routh's procedure		2	9	
Short questions	Lecture	Conservation theorems and physical significance .of the Hamiltonian		2	10	
Short questions	Lecture	Canonical transformation		2	11	
Short questions	Lecture	Generating function of transformation		2	12	

Short questions	Lecture	Examples of Canonical transformation	2	13
Short questions	Lecture	Examples of Canonical transformation	2	14
		Tset 2	2	15

12. Infrastructure				
 1-Classical Mechanics (3rd Edition) by by Herbert Goldstein 2- Classical Mechanics by T. W. B. Kibble, Frank H. Berkshire 	Required readings : 1. Course Books 2. Other			
• PowerPoint	Special Requirements			
Attending scientific seminars	Social services (e.g. guest lectures, vocational training and field studies)			

13. Acceptance			
Prerequisites			
10	Minimum number of students		
14	The largest number of students		

Course Description Form

Review the performance of higher education institutions ((Academic Program Review)

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve.

Proving whether he has made the most of the available learning opportunities. It must be linked to the description of program.

University Of Anbar	1. Educational institution
College of Education for Pure Sciences /	2. University Department /
Department of Physics	Center
Advanced quantum mechanics	3. Course Name/Code
Ph.D	4. Programs in which it enters
Presence	5. Available Attendance Forms
First Semester / 2023-2024	6. Semester / Year
3 hours	7. Number of Credit Hours (Total)
1Sept. 2023	8. The history of preparation of this description
9 Course Objectives:	

9. Course Objectives:

The student knows quantum mechanics in electromagnetic fields , Lorentz transformations , Angular momentum in electromagnetic fields in viewing of Q.M. and relativistic quantum mechanics equations

10. Learning outcomes and methods of teaching, learning and evaluation

A. Knowledge and understanding

The student may understands the quantum mechanics in electromagnetic fields , Lorentz transformations , Angular momentum in electromagnetic fields in viewing of Q.M. and relativistic quantum mechanics equations

B. Subject-specific skills

Development of understand to students in modern mathematics, electromagnetics and quantum mechanics

• Teaching and learning methods

- Lecture, discussion, short reports, problem solving

• Evaluation methods

- Monthly test (essay and topical)
- -Activity
- -Short questions
- -Reports
- -Duties
- -Final Exam

C. Thinking skills

- Ask various questions and brainstorm

• Teaching and learning methods

Discussion, lecture, questioning

• Evaluation methods

- 1. Achievement Tests
- 2. Test methods (interview and observation)
- 3. Student feedback

D. General and transferable Skills (other skills related to employability and personal development).

Q.M. in EM fields needs to modern mathematical and understanding to all laws in EM an Electrodynamics also relativistic Q.M needs to know more on Relativity

11. Course Structure					
Evaluati on method	Method of educatio n	Name of the unit/course or topic	Required Learning Outcomes	Hours	The week
Short questions	Lecture	Description of the Classical Electromagnetic Field / Separation of Longitudinal and Transverse Components		3	1
Short questions	Lecture	Planar Electromagnetic Waves Hamilton Operator Electron in a Stationary Homogeneous Magnetic Field		3	2
Short questions	Lecture	Time -Dependent Perturbation Theory Perturbations due to Electromagnetic Radiation One-Photon Absorption and Emission in Atoms Two-Photon Processes		3	3
Short questions	Lecture	Many–Particle Systems Permutation Symmetry of Bosons and Fermions Operators of 2nd One– Quantization and Two–Particle Operator		3	4
Short questions	Lecture	Independent-Particle Models Self-Consistent Field Theory Self- Consistent Field		3	5

		Algorithm Properties of the SCF Ground State Mean Field Theory for Macroscopic Systems Test		
Short		Relativistic Quantum		6
questions	Lecture	Mechanics	 3	7
Short questions	Lecture	Natural Representation of the Lorentz Group Scalars, 4–Vectors and Tensors Relativistic Electrodynamics Function Space Representation of Lorentz Group	3	8
Short questions	Lecture	Klein–Gordon Equation Klein– Gordon Equation for Particles in an Electromagnetic	3	9
Short questions	Lecture	The Dirac Equation Lorentz Invariance of the Dirac Equation Solutions of the Free Particle Dirac . Equation	3	10
Short questions	Lecture	Dirac Particles in Electromagnetic Field Spinor Formulation of Relativistic Quantum Mechanics The Lorentz Transformation of the Dirac Bispinor Relationship Between the Lie Groups SL(2,C) and SO(3,1	3	11
Short questions	Lecture	Spinor Spinors Tensors	3	12
Short questions	Lecture	Symmetry and Degeneracies Isospin and the SU(2) flavor symmetry	3	13

Short questions	Lecture	The Eightfold Way and the flavor SU(3) symmetry	3	14
Short questions	Lecture	Symmetry and Degeneracies Isospin and the SU(2) flavor symmetry	3	15

12. Infrastructure				
 1-Advanced Quantum Mechanics by Franz Schwabl 2- Quantum Mechanics by LEONARD I. SCHIFF 3-Introduction to Quantum mechanics by D.J. Griffiths 4-Quantum Mechanics by Eugen Merzbacher 	Required readings : 1. Course Books 2. Other			
• PowerPoint	Special Requirements			
Attending scientific seminars	Social services (e.g. guest lectures, vocational training and field studies)			

13. Acceptance		
	Prerequisites	
3	Minimum number of students	
5	The largest number of students	